A point P in the plane of a triangle

https://www.linkedin.com/groups/8313943/8313943-6418307480438210563
Find a point P in the plane of a given triangle $A B C$ such that the sum

$$
\frac{|A P|^{2}}{b^{2}}+\frac{|B P|^{2}}{c^{2}}+\frac{|C P|^{2}}{a^{2}}
$$

is minimal, where $a=B C, b=C A, c=A B$.
Solution by Arkady Alt, San Jose, California, USA.
Let Q be point on the plane with barycentric coordinates $\left(q_{a}, q_{b}, q_{c}\right)=$ $\left(\frac{1}{k b^{2}}, \frac{1}{k c^{2}}, \frac{1}{k a^{2}}\right)$, where $k=\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{2}}$. Then by Leibnitz Formula for distance between two points in barycentric coordinates we obtain $P Q^{2}=\sum_{c y c} q_{a} P A^{2}-\sum_{c y c} q_{b} q_{c} a^{2}=\frac{1}{k} \sum_{c y c} \frac{P A^{2}}{b^{2}}-\frac{1}{k^{2}} \sum_{c y c} \frac{1}{c^{2} a^{2}} \cdot a^{2}=$ $\frac{1}{k} \sum_{c y c} \frac{P A^{2}}{b^{2}}-\frac{1}{k^{2}} \sum_{c y c} \frac{1}{c^{2}}=\frac{1}{k}\left(\sum_{c y c} \frac{P A^{2}}{b^{2}}-1\right)$.
Hence, $\sum_{\text {cyc }} \frac{P A^{2}}{b^{2}}=k \cdot P Q^{2}+1$ and, therefore, $\min \sum_{\text {cyc }} \frac{P A^{2}}{b^{2}}=1=\sum_{\text {cyc }} \frac{Q A^{2}}{b^{2}}$.
That is $\sum_{c y c} \frac{P A^{2}}{b^{2}}$ is minimal iff $P=Q$, where Q is intersect point of cevians $A A_{1}, B B_{1}, C C_{1}$ such that $\frac{B A_{1}}{A_{1} C}=\frac{F_{c}}{F_{b}}=\frac{q_{c}}{q_{b}}=\frac{c^{2}}{a^{2}}, \frac{C B_{1}}{B_{1} A}=\frac{q_{a}}{q_{c}}=\frac{a^{2}}{b^{2}}$, $\frac{A C_{1}}{C_{1} B}=\frac{q_{b}}{q_{a}}=\frac{b^{2}}{c^{2}}$.

